Economic Policy Visualization

Wealth ยท Scales

Dr. Matthias Schnetzer

November 4, 2024

What is wealth and how do we measure it?

Definition of private wealth

Non-financial assets

  • Dwellings (owner-occupied residence, other real estate)
  • Consumer durables (vehicles, etc.)
  • Valuables
  • Intellectual property

Financial assets

  • Currency and deposits
  • Net equity in own unincorporated business
  • Mututal funds and investment funds
  • (Private) Pensions funds
  • Bonds and other debt securities
  • Shares and other equity
  • Life insurance funds -Other financial assets

Liabilities

  • Owner-occupied residence loans
  • Consumer durable loans (e.g. for vehicles)
  • Other investment loans (collateralized)
  • Other loans (e.g. education loans)

No human, social and cultural capital; No public social security pensions (marketable vs. augmented wealth)

HFCS sampling and underreporting

  • Target population in Austria 2021: 4 million households
  • Gross sample in HFCS 2021: 6,300 households
  • Realized interviews: 2,293 households
  • Response rate in HFCS 2021: 39%
  • Residual: refused interviews, invalid addresses, households not available, etc.
  • Response refusal correlates with wealth and is highest at the top (Vermeulen, 2016)
  • Wealthy households own a greater number of assets and miss some components more easily (Kennickell/Woodburn, 1999)

Upstream strategy against underreporting: Oversampling

  • Undercoverage and Underreporting
  • Oversampling is crucial for wealth surveys
  • Oversampling in HFCS 2021: ๐Ÿ‡ง๐Ÿ‡ช ๐Ÿ‡จ๐Ÿ‡พ ๐Ÿ‡ฉ๐Ÿ‡ช ๐Ÿ‡ช๐Ÿ‡ช ๐Ÿ‡ช๐Ÿ‡ธ ๐Ÿ‡ฎ๐Ÿ‡น ๐Ÿ‡ซ๐Ÿ‡ฎ ๐Ÿ‡ซ๐Ÿ‡ท ๐Ÿ‡ฌ๐Ÿ‡ท ๐Ÿ‡ญ๐Ÿ‡ท ๐Ÿ‡ญ๐Ÿ‡บ ๐Ÿ‡ฎ๐Ÿ‡ช ๐Ÿ‡ฑ๐Ÿ‡ป ๐Ÿ‡ฑ๐Ÿ‡น ๐Ÿ‡ฑ๐Ÿ‡บ ๐Ÿ‡ต๐Ÿ‡น ๐Ÿ‡ธ๐Ÿ‡ฐ
  • No oversampling: ๐Ÿ‡ฆ๐Ÿ‡น ๐Ÿ‡จ๐Ÿ‡ฟ ๐Ÿ‡ฒ๐Ÿ‡น ๐Ÿ‡ณ๐Ÿ‡ฑ ๐Ÿ‡ธ๐Ÿ‡ฎ
  • How does oversampling work?
    • External personal wealth data (๐Ÿ‡ซ๐Ÿ‡ท ๐Ÿ‡ช๐Ÿ‡ธ ๐Ÿ‡ฑ๐Ÿ‡น)
    • List of streets with high-income people (๐Ÿ‡ฉ๐Ÿ‡ช)
    • Income tax data (๐Ÿ‡ฑ๐Ÿ‡บ 20% of the sample from top 10% earners)
    • Regions with higher average income or house prices (๐Ÿ‡ง๐Ÿ‡ช ๐Ÿ‡ฌ๐Ÿ‡ท)
    • Electricity consumption (๐Ÿ‡จ๐Ÿ‡พ)

Downstream strategy against underreporting: Pareto estimation

  • Pareto-Distribution is a sensible approximation to the distribution of large wealth
  • Two parameters:
    • Threshold for โ€œlargeโ€ wealth \(m\)
    • Pareto-Index \(\alpha\)

\[P_i(x_i) = Pr(X_i \leqslant x_i) = 1 - \left(\frac{m_i}{x_i}\right)^{\alpha_i}\] \[\forall ~\text{implicates} ~i = 1...5 \wedge x_i \geqslant m_i\]

A smaller \(\alpha\) means greater inequality. Empirically, \(\alpha\) often is around 1.5 for wealth.

European Rich List Database (ERLDB) and HFCS

Cumulative density function of wealth in Germany

New data source: Distributional wealth accounts (DWA)

Wealth distribution in Austria

Net wealth distribution in Austria

Self-positioning in the wealth distribution

  • Correct positioning of households in the richest decile: 0
  • Average estimated decile in the richest decile: 6
  • Average estimated decile in the poorest decile: 3

Gender wealth gap in Austria

Mean wealth Mean GWG (in โ‚ฌ) Mean GWG (in %) Median Wealth Median GWG (in โ‚ฌ) Median GWG (in %)
All respondents
Couples 356,553 173,683
Male 207,485 58,417 28 82,285 13,862 17
Female 149,068 68,422
Male respondent
Male 270,307 110,995 41.1 99,347 27,085 27.3
Female 159,312 72,262
Female respondent
Male 138,830 957 0.7 63,825 โˆ’1,395 -2.2
Female 137,873 65,220

Migrant wealth gap in Austria

Mean wealth Mean MWG (in โ‚ฌ) Mean MWG (in %) Median Wealth Median MWG (in โ‚ฌ) Median MWG (in %)
Natives 165,730 59,001
Migrants
Total 98,007 67,723 41 15,931 43,070 73
1st generation 63,001 102,729 62 9,917 49,084 83
2nd generation 139,775 25,955 16 32,763 26,238 44
1st generation migrants only
Short stay 39,598 126,132 76 4,935 54,066 92
Long stay 86,317 79,413 48 20,196 38,805 66

Perceptions of wealth inequality

Income and wealth inequality across Europe

Perceptions of fairness in wealth disparities

Private-public wealth gap

Scales

Axes

Continuous

ggplot(aes(x = life_expectancy, y = poverty_rate)) +
  geom_point() +
  scale_x_continuous(limits = c(40, 100),
                     breaks = seq(40, 100, 20),
                     labels = scales::number_format(suffix = "years")) +
  scale_y_continuous(labels = scales::percent)

Dates

ggplot(aes(x = year, y = poverty_rate)) +
  geom_line() +
  scale_x_date(limits = c(as.Date("2020-01-01"), as.Date("2024-01-01")),
                breaks = date_breaks = "2 years",
                labels = date_labels = "%Y")

Others

scale_x_discrete(), scale_x_log10(), scale_x_reverse(), scale_x_sqrt(), โ€ฆ

Colors

Manual

ggplot(aes(x = year, y = poverty_rate, color = country)) +
  geom_line() +
  scale_color_manual(values = c("red", "blue", "green"))

Gradient

ggplot(aes(x = gdp, y = life_expectancy, color = poverty_rate)) +
  geom_point() +
  scale_color_gradient(low = "green", high = "red", na.value = "gray80")

Brewer

ggplot(aes(x = year, y = poverty_rate, fill = country)) +
  geom_area() +
  scale_fill_brewer(palette = "Set1")

Others

scale_color_binned(), scale_color_distiller(), scale_color_grey(), โ€ฆ

Shape, size and alpha

tribble(~x, ~y, ~significance, ~gdp, ~continent,
        0.5, 0.5, "yes", 140, "Asia",
        1.0, 0.5, "yes", 100, "Africa",
        1.5, 0.5, "no",  250, "Europe") |> 
  ggplot(aes(x = x, y = y)) +
  geom_point(aes(alpha = significance, size = gdp, shape = continent)) +
  scale_alpha_discrete(range = c(0.5, 1), guide = guide_none()) +
  scale_size_continuous(range = c(5, 12), guide = guide_none()) +
  scale_shape_manual(values = c(17, 19, 15),
                     guide = guide_legend(title = "Continent", 
                                          override.aes = list(size = 5))) +
  theme_minimal()

Guides

ggplot(aes(x = life_expectancy, y = poverty_rate, color = continent)) +
  geom_point() +
  scale_color_viridis_d(guide = guide_legend(title.position = "top",
                                             title.theme = element_text(size = 2),  
                                             title.hjust = 0, title.vjust = 0.5,
                                             label.position = "bottom",
                                             label.hjust = 0, label.vjust = 0.5,
                                             keywidth = 2, keyheight = 2,
                                             direction = "horizontal",
                                             override.aes = list(size = 4),
                                             nrow = 1, ncol = 4,
                                             byrow = FALSE, reverse = FALSE, ...))


Scale type Default guide type
continuous scales for colour/fill aesthetics colourbar
binned scales for colour/fill aesthetics coloursteps
position scales (continuous, binned and discrete) axis
discrete scales (except position scales) legend
binned scales (except position/colour/fill scales) bins

Bibliography

Chancel, Lucas/Piketty, Thomas/Saez, Emmanuel/Zucman, Gabriel (2022). World inequality report 2022. World Inequality Lab.
Disslbacher, Franziska/Ertl, Michael/List, Emanuel/Mokre, Patrick/Schnetzer, Matthias (2020). On top of the top - adjusting wealth distributions using national rich lists (Working Paper Series No. 20). INEQ.
Gabaix, Xavier (2016). Power Laws in Economics: An Introduction. Journal of Economic Perspectives, 30(1), 185โ€“206. DOI: 10.1257/jep.30.1.185
Kennickell, Arthur B./Woodburn, R. Louise (1999). Consistent Weight Design for the 1989, 1992 and 1995 SCFs, and the Distribution of Wealth. Review of Income and Wealth, 45(2), 193โ€“215. DOI: 10.1111/j.1475-4991.1999.tb00328.x
Muckenhuber, Mattias/Rehm, Miriam/Schnetzer, Matthias (2022). A Tale of Integration? The Migrant Wealth Gap in Austria. European Journal of Population, 38(2), 163โ€“190. DOI: 10.1007/s10680-021-09604-1
OECD (2013). OECD guidelines for micro statistics on household wealth. OECD. DOI: 10.1787/9789264194878-en
Rehm, Miriam/Schneebaum, Alyssa/Schuster, Barbara (2022). Intra-Couple Wealth Inequality: Whatโ€™s Socio-Demographics Got to Do with It? European Journal of Population, 38(4), 681โ€“720. DOI: 10.1007/s10680-022-09633-4
Schnetzer, Matthias/Hofmann, Julia/Marterbauer, Markus (2024). Fairness Perceptions of Wealth Inequality in Europe. Review of Income and Wealth (R&R).
Vermeulen, Philip (2016). Estimating the Top Tail of the Wealth Distribution. The American Economic Review, 106(5), 646โ€“650. DOI: 10.1257/aer.p20161021